The Effects of Low Levels of Dystrophin on Mouse Muscle Function and Pathology

نویسندگان

  • Maaike van Putten
  • Margriet Hulsker
  • Vishna Devi Nadarajah
  • Sandra H. van Heiningen
  • Ella van Huizen
  • Maarten van Iterson
  • Peter Admiraal
  • Tobias Messemaker
  • Johan T. den Dunnen
  • Peter A. C. 't Hoen
  • Annemieke Aartsma-Rus
چکیده

Duchenne muscular dystrophy (DMD) is a severe progressive muscular disorder caused by reading frame disrupting mutations in the DMD gene, preventing the synthesis of functional dystrophin. As dystrophin provides muscle fiber stability during contractions, dystrophin negative fibers are prone to exercise-induced damage. Upon exhaustion of the regenerative capacity, fibers will be replaced by fibrotic and fat tissue resulting in a progressive loss of function eventually leading to death in the early thirties. With several promising approaches for the treatment of DMD aiming at dystrophin restoration in clinical trials, there is an increasing need to determine more precisely which dystrophin levels are sufficient to restore muscle fiber integrity, protect against muscle damage and improve muscle function.To address this we generated a new mouse model (mdx-Xist(Δhs)) with varying, low dystrophin levels (3-47%, mean 22.7%, stdev 12.1, n = 24) due to skewed X-inactivation. Longitudinal sections revealed that within individual fibers, some nuclei did and some did not express dystrophin, resulting in a random, mosaic pattern of dystrophin expression within fibers.Mdx-Xist(Δhs), mdx and wild type females underwent a 12 week functional test regime consisting of different tests to assess muscle function at base line, or after chronic treadmill running exercise. Overall, mdx-Xist(Δhs) mice with 3-14% dystrophin outperformed mdx mice in the functional tests. Improved histopathology was observed in mice with 15-29% dystrophin and these levels also resulted in normalized expression of pro-inflammatory biomarker genes, while for other parameters >30% of dystrophin was needed. Chronic exercise clearly worsened pathology, which needed dystrophin levels >20% for protection. Based on these findings, we conclude that while even dystrophin levels below 15% can improve pathology and performance, levels of >20% are needed to fully protect muscle fibers from exercise-induced damage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P164: Adeno-Associated Viral Vectors in Duchenne Muscular Dystrophy

Duchenne muscular dystrophy (BMD) is an inherited X-link disease. The incidence of this muscle-wasting disease is 1:5000 male live births. Mutation in the gene coding for dystrophin is the main cause of BMD. Most cases of this disease succumb to respiratory and cardiac failure in 3rd to 4th decades. The slow progression of BMD and recent achievement of gene therapies make it as an appropriate c...

متن کامل

Prevention of dystrophic pathology in severely affected dystrophin/utrophin-deficient mice by morpholino-oligomer-mediated exon-skipping.

Duchenne muscular dystrophy (DMD) is a severe neuromuscular disorder caused by mutations in the dystrophin gene that result in the absence of functional protein. Antisense-mediated exon-skipping is one of the most promising approaches for the treatment of DMD because of its capacity to correct the reading frame and restore dystrophin expression, which has been demonstrated in vitro and in vivo....

متن کامل

Dystrophin Levels Required for Genetic Correction of Duchenne Muscular Dystrophy

Correction of the muscle pathology in Duchenne muscular dystrophy (DMD) could theoretically be achieved if methods are developed to produce functional versions of the dystrophin protein in muscle tissue. While a variety of approaches are currently being tested to achieve this aim, we have explored the feasibility of correcting the dystrophic pathology using transgenic mouse model systems. By ge...

متن کامل

Blastocyst Injection of Wild Type Embryonic Stem Cells Induces Global Corrections in Mdx Mice

Duchenne muscular dystrophy (DMD) is an incurable neuromuscular degenerative disease, caused by a mutation in the dystrophin gene. Mdx mice recapitulate DMD features. Here we show that injection of wild-type (WT) embryonic stem cells (ESCs) into mdx blastocysts produces mice with improved pathology and function. A small fraction of WT ESCs incorporates into the mdx mouse nonuniformly to upregul...

متن کامل

Repression-free utrophin-A 5’UTR variants

Mutation in the dystrophin gene results Duchenne Muscular Dystrophy (DMD), an X-linked fatal neuromuscular disorder. Dystrophin deficiency can be compensated by upregulation of utrophin, an autosomal homologue of dystrophin. But the expression of utrophin in adults is restricted to myotendinous and neuromuscular junctions. Therefore utrophin upregulation throughout the muscle fiber can only be ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012